\(\int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [263]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 38 \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{a^2 d (1+n)} \]

[Out]

hypergeom([2, 1+n],[2+n],-sin(d*x+c))*sin(d*x+c)^(1+n)/a^2/d/(1+n)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2912, 66} \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(2,n+1,n+2,-\sin (c+d x))}{a^2 d (n+1)} \]

[In]

Int[(Cos[c + d*x]*Sin[c + d*x]^n)/(a + a*Sin[c + d*x])^2,x]

[Out]

(Hypergeometric2F1[2, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^(1 + n))/(a^2*d*(1 + n))

Rule 66

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^n*((b*x)^(m + 1)/(b*(m + 1)))*Hypergeometr
ic2F1[-n, m + 1, m + 2, (-d)*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-d/(b*c), 0])))

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\left (\frac {x}{a}\right )^n}{(a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{a^2 d (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00 \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{a^2 d (1+n)} \]

[In]

Integrate[(Cos[c + d*x]*Sin[c + d*x]^n)/(a + a*Sin[c + d*x])^2,x]

[Out]

(Hypergeometric2F1[2, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^(1 + n))/(a^2*d*(1 + n))

Maple [F]

\[\int \frac {\cos \left (d x +c \right ) \left (\sin ^{n}\left (d x +c \right )\right )}{\left (a +a \sin \left (d x +c \right )\right )^{2}}d x\]

[In]

int(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^2,x)

[Out]

int(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^2,x)

Fricas [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(-sin(d*x + c)^n*cos(d*x + c)/(a^2*cos(d*x + c)^2 - 2*a^2*sin(d*x + c) - 2*a^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)**n/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^n*cos(d*x + c)/(a*sin(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sin(d*x + c)^n*cos(d*x + c)/(a*sin(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\int \frac {\cos \left (c+d\,x\right )\,{\sin \left (c+d\,x\right )}^n}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((cos(c + d*x)*sin(c + d*x)^n)/(a + a*sin(c + d*x))^2,x)

[Out]

int((cos(c + d*x)*sin(c + d*x)^n)/(a + a*sin(c + d*x))^2, x)